Title: | Distributional Instrumental Variable (DIV) Model |
---|---|
Description: | Distributional instrumental variable (DIV) model for estimation of the interventional distribution of the outcome Y under a do-intervention on the treatment X. Instruments, predictors and targets can be univariate or multivariate. Functionality includes estimation of the (conditional) interventional mean and quantiles, as well as sampling from the fitted (conditional) interventional distribution. |
Authors: | Anastasiia Holovchak [aut, cre, ctb], Sorawit Saengkyongam [aut, ctb], Nicolai Meinshausen [aut, ctb], Xinwei Shen [aut, ctb] |
Maintainer: | Anastasiia Holovchak <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.1.0 |
Built: | 2025-03-30 05:41:23 UTC |
Source: | https://github.com/cran/DistributionIV |
This function fits a distributional IV model to the data. It allows for the tuning of several parameters related to model complexity and model training. Variables are per default internally standardized (predictions are on the original scale).
div( Z, X, Y, W = NULL, epsx_dim = 50, epsy_dim = 50, epsh_dim = 50, hidden_dim = 100, num_layer = 3, num_epochs = 1000, lr = 10^(-3), beta = 1, silent = FALSE, standardize = TRUE )
div( Z, X, Y, W = NULL, epsx_dim = 50, epsy_dim = 50, epsh_dim = 50, hidden_dim = 100, num_layer = 3, num_epochs = 1000, lr = 10^(-3), beta = 1, silent = FALSE, standardize = TRUE )
Z |
A data frame, matrix, vector, or factor variable representing the instrumental variable. |
X |
A data frame, matrix, vector, or factor variable representing the predictor. |
Y |
A data frame, matrix, vector, or factor variable representing the target variable. |
W |
(Optional) A data frame, matrix, vector, or factor variable representing the exogenous variable(s). |
epsx_dim |
The dimension of the noise corresponding to the predictor introduced in the model (default: 50). |
epsy_dim |
The dimension of the noise corresponding to the outcome introduced in the model (default: 50). |
epsh_dim |
The dimension of the noise corresponding to the hidden confounder introduced in the model (default: 50). |
The size of the hidden layer in the model (default: 100). |
|
num_layer |
The number of layers in the model (default: 3). |
num_epochs |
The number of epochs to be used in training (default: 1000). |
lr |
The learning rate to be used in training (default: 10^-3). |
beta |
The beta scaling factor for energy loss, numeric value from (0,2) (default: 1). |
silent |
A boolean indicating whether to suppress output during model training (default: FALSE). |
standardize |
A boolean indicating whether to standardize the input data (default: TRUE). |
A distributional IV model object with class 'DIV'.
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit generativeIV model ---------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model) # Prediction on test data --------------------------------------------------- Yhat <- predict(object = DIV_model, Xtest = Xtest, type = "mean") cat("\n Correlation between predicted and realized values: ", signif(cor(Yhat, Ytest), 3)) plot(Yhat, Ytest, xlab = "model prediction", ylab = "observation") # Quantile prediction ------------------------------------------------------- Yhat_quant <- predict(object = DIV_model, Xtest = Xtest, type = "quantile") ord <- order(Yhat) matplot(Yhat[ord], Yhat_quant[ord,], type = "l", col = 2, lty = 1, xlab = "model prediction", ylab = "observation") points(Yhat[ord], Ytest[ord], pch = 20, cex = 0.5) #' # Sampling from estimated model --------------------------------------------- Ysample <- predict(object = DIV_model, Xtest = Xtest, type = "sample", nsample = 1) #' # Plots of realized & sampled values against first variable ----------------- oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(Xtest[, 1], Ytest, xlab = "Predictor Variable 1", ylab = "Observation") plot(Xtest[, 1], Ysample, xlab = "Predictor Variable 1", ylab = "Model sample") par(oldpar)
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit generativeIV model ---------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model) # Prediction on test data --------------------------------------------------- Yhat <- predict(object = DIV_model, Xtest = Xtest, type = "mean") cat("\n Correlation between predicted and realized values: ", signif(cor(Yhat, Ytest), 3)) plot(Yhat, Ytest, xlab = "model prediction", ylab = "observation") # Quantile prediction ------------------------------------------------------- Yhat_quant <- predict(object = DIV_model, Xtest = Xtest, type = "quantile") ord <- order(Yhat) matplot(Yhat[ord], Yhat_quant[ord,], type = "l", col = 2, lty = 1, xlab = "model prediction", ylab = "observation") points(Yhat[ord], Ytest[ord], pch = 20, cex = 0.5) #' # Sampling from estimated model --------------------------------------------- Ysample <- predict(object = DIV_model, Xtest = Xtest, type = "sample", nsample = 1) #' # Plots of realized & sampled values against first variable ----------------- oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(Xtest[, 1], Ytest, xlab = "Predictor Variable 1", ylab = "Observation") plot(Xtest[, 1], Ysample, xlab = "Predictor Variable 1", ylab = "Model sample") par(oldpar)
This function computes predictions from a trained DIV model. It allows for estimation of the interventional mean and quantiles, as well as sampling from the fitted interventional distribution. If the model includes exogenous predictors, it allows for estimation of the conditional interventional mean and quantiles, as well as sampling from the fitted conditional interventional distribution.
## S3 method for class 'DIV' predict( object, Xtest, Wtest = NULL, type = c("mean", "sample", "quantile")[1], trim = 0.05, quantiles = 0.1 * (1:9), nsample = 200, drop = TRUE, ... )
## S3 method for class 'DIV' predict( object, Xtest, Wtest = NULL, type = c("mean", "sample", "quantile")[1], trim = 0.05, quantiles = 0.1 * (1:9), nsample = 200, drop = TRUE, ... )
object |
A trained DIV model returned from div or divfit functions. |
Xtest |
A matrix or data frame representing predictors in the test set. |
Wtest |
A matrix or data frame representing exogenous predictors in the test set.
If the model includes exogenous predictors, |
type |
The type of prediction to make:
|
trim |
The proportion of extreme values to trim when calculating the mean (default: 0.05). |
quantiles |
The quantiles to estimate if type is |
nsample |
The number of samples to draw if type is |
drop |
A boolean indicating whether to drop dimensions of length 1 from the output (default: TRUE). |
... |
additional arguments (currently ignored). |
A vector or matrix/array of predictions.
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit DIV model ------------------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model) # Prediction on test data --------------------------------------------------- Yhat <- predict(object = DIV_model, Xtest = Xtest, type = "mean") cat("\n Correlation between predicted and realized values: ", signif(cor(Yhat, Ytest), 3)) plot(Yhat, Ytest, xlab = "model prediction", ylab = "observation") # Quantile prediction ------------------------------------------------------- Yhat_quant <- predict(object = DIV_model, Xtest = Xtest, type = "quantile") ord <- order(Yhat) matplot(Yhat[ord], Yhat_quant[ord,], type = "l", col = 2, lty = 1, xlab = "model prediction", ylab = "observation") points(Yhat[ord], Ytest[ord], pch = 20, cex = 0.5) #' # Sampling from estimated model --------------------------------------------- Ysample <- predict(object = DIV_model, Xtest = Xtest, type = "sample", nsample = 1) #' # Plots of realized & sampled values against first variable ----------------- oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(Xtest[, 1], Ytest, xlab = "Predictor Variable 1", ylab = "Observation") plot(Xtest[, 1], Ysample, xlab = "Predictor Variable 1", ylab = "Model sample") par(oldpar)
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit DIV model ------------------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model) # Prediction on test data --------------------------------------------------- Yhat <- predict(object = DIV_model, Xtest = Xtest, type = "mean") cat("\n Correlation between predicted and realized values: ", signif(cor(Yhat, Ytest), 3)) plot(Yhat, Ytest, xlab = "model prediction", ylab = "observation") # Quantile prediction ------------------------------------------------------- Yhat_quant <- predict(object = DIV_model, Xtest = Xtest, type = "quantile") ord <- order(Yhat) matplot(Yhat[ord], Yhat_quant[ord,], type = "l", col = 2, lty = 1, xlab = "model prediction", ylab = "observation") points(Yhat[ord], Ytest[ord], pch = 20, cex = 0.5) #' # Sampling from estimated model --------------------------------------------- Ysample <- predict(object = DIV_model, Xtest = Xtest, type = "sample", nsample = 1) #' # Plots of realized & sampled values against first variable ----------------- oldpar <- par(no.readonly = TRUE) par(mfrow = c(1, 2)) plot(Xtest[, 1], Ytest, xlab = "Predictor Variable 1", ylab = "Observation") plot(Xtest[, 1], Ysample, xlab = "Predictor Variable 1", ylab = "Model sample") par(oldpar)
This function is a utility that displays a summary of a fitted DIV model object.
## S3 method for class 'DIV' print(x, ...)
## S3 method for class 'DIV' print(x, ...)
x |
A trained DIV model returned from the divfit() function. |
... |
additional arguments (currently ignored). |
This function does not return anything. It prints a summary of the model, including information about its architecture and training process, and the loss values achieved at several epochs during training.
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit DIV model ---------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model)
# Simulate data ------------------------------------------------------------- p_Z <- 4 p_X <- 2 set.seed(2209) n_train <- 1000 Z <- matrix(rnorm(n_train * p_Z, mean = 2), ncol = p_Z) H <- rnorm(n_train, mean = 0, sd = 1.5) X1 <- 0.1 * (Z[, 1] + rnorm(n_train, sd = 0.1)) ^ 2 + (Z[, 2] + rnorm(n_train, sd = 1)) ^ 2 + H + rnorm(n_train, sd = 0.1) X2 <- 0.5 * (Z[, 3] + Z[, 4]) ^ 2 + 0.1 * H ^ 2 + rnorm(n_train, sd = 0.1) X <- matrix(cbind(X1, X2), ncol = p_X) Y <- 0.5 * X[, 1] + 0.2 * (X[, 2] + rnorm(n_train, sd = 0.2) + H) ^ 2 + rnorm(n_train, sd = 0.1) n_test <- n_train Ztest <- matrix(rnorm(n_test * p_Z, mean = 2), ncol = p_Z) Htest <- rnorm(n_test, mean = 0, sd = 1.5) X1test <- 0.1 * (Ztest[, 1] + rnorm(n_test, sd = 0.1)) ^ 2 + (Ztest[, 2] + rnorm(n_test, sd = 1)) ^ 2 + Htest + rnorm(n_test, sd = 0.1) X2test <- 0.5 * (Ztest[, 3] + Ztest[, 4]) ^ 2 + 0.1 * Htest ^ 2 + rnorm(n_test, sd = 0.1) Xtest <- matrix(cbind(X1test, X2test), ncol = p_X) Ytest <- 0.5 * Xtest[, 1] + 0.2 * (Xtest[, 2] + rnorm(n_test, sd = 0.2) + Htest) ^ 2 + rnorm(n_test, sd = 0.1) # Fit DIV model ---------------------------------------------------- # Consider increasing number of epochs. Here: num_epochs = 100 for fast computation only. DIV_model <- div(Z = Z, X = X, Y = Y, num_epochs = 100) print(DIV_model)